Motivation

Bridge Structural Health

- 50+% of U.S. bridges built before 1940's
- O 1 in 9 structurally deficient
- Maintenance costs ~\$20.5 billion annually; only \$12.8 billion available

Structural Health Monitoring (SHM) Systems

use sensor data to monitor structural behavior

- **Currently**: Cable connections between sensors expensive and time-consuming
- Solution: Create a wireless network of multiple mobile sensing robots

Requirements

- Horizontally and vertically traverse steel bridges
- Measure bridge vibrations at low frequencies
- Wirelessly transmit vibration data to a PC
- Lightweight for deployment and retrieval by drone

Characteristic	Specification
Magnet Holding Force	Holds robot static indefinitely
Operational Lifetime	Movement Operation ≥ 1 hour Recording Operation ≥ 1 hour
Accelerometer Range and Accuracy	0 – 50 Hz ± 0.5 Hz 50 Hz +/- 0.5 Hz
Robot Size	Greatest side length ≤ 0.25 m
Weight	Total mass ≤ 1 kg
Wireless Communication Distance	Able to send/receive data ≥ 800 m
Path Following	Shall not fall off edge in "sunny day" conditions

Advisor: Dr. Patricio A. Vela

